
Published as a conference paper at ICLR 2023

NAGPHORMER: A TOKENIZED GRAPH TRANSFORMER
FOR NODE CLASSIFICATION IN LARGE GRAPHS

Jinsong Chen1,2,3,∗, Kaiyuan Gao2,3,∗, Gaichao Li1,2,3, Kun He2,3,†
1Institute of Artificial Intelligence, Huazhong University of Science and Technology
2School of Computer Science and Technology, Huazhong University of Science and Technology
3Hopcroft Center on Computing Science, Huazhong University of Science and Technology
{chenjinsong,im_kai,gaichaolee,brooklet60}@hust.edu.cn

ABSTRACT

The graph Transformer emerges as a new architecture and has shown superior
performance on various graph mining tasks. In this work, we observe that existing
graph Transformers treat nodes as independent tokens and construct a single long
sequence composed of all node tokens so as to train the Transformer model, causing
it hard to scale to large graphs due to the quadratic complexity on the number of
nodes for the self-attention computation. To this end, we propose a Neighborhood
Aggregation Graph Transformer (NAGphormer) that treats each node as a sequence
containing a series of tokens constructed by our proposed Hop2Token module. For
each node, Hop2Token aggregates the neighborhood features from different hops
into different representations and thereby produces a sequence of token vectors
as one input. In this way, NAGphormer could be trained in a mini-batch manner
and thus could scale to large graphs. Moreover, we mathematically show that as
compared to a category of advanced Graph Neural Networks (GNNs), the decou-
pled Graph Convolutional Network, NAGphormer could learn more informative
node representations from the multi-hop neighborhoods. Extensive experiments on
benchmark datasets from small to large are conducted to demonstrate that NAG-
phormer consistently outperforms existing graph Transformers and mainstream
GNNs. Code is available at https://github.com/JHL-HUST/NAGphormer.

1 INTRODUCTION

Graphs, as a powerful data structure, are widely used to represent entities and their relations in a
variety of domains, such as social networks in sociology and protein-protein interaction networks in
biology. Their complex features (e.g., attribute features and topology features) make the graph mining
tasks very challenging. Graph Neural Networks (GNNs) (Chen et al., 2020c; Kipf & Welling, 2017;
Veličković et al., 2018), owing to the message passing mechanism that aggregates neighborhood
information for learning the node representations (Gilmer et al., 2017), have been recognized as a
type of powerful deep learning techniques for graph mining tasks (Xu et al., 2019; Fan et al., 2019;
Ying et al., 2018; Zhang & Chen, 2018; Jin et al., 2019) over the last decade. Though effective,
message passing-based GNNs have a number of inherent limitations, including over-smoothing (Chen
et al., 2020a) and over-squashing (Alon & Yahav, 2021) with the increment of model depth, limiting
their potential capability for graph representation learning. Though recent efforts (Yang et al., 2020;
Lu et al., 2021; Huang et al., 2020; Sun et al., 2022) have been devoted to alleviate the impact of
over-smoothing and over-squashing problems, the negative influence of these inherent limitations
cannot be eliminated completely.

Transformers (Vaswani et al., 2017), on the other hand recently, are well-known deep learning archi-
tectures that have shown superior performance in a variety of data with an underlying Euclidean or
grid-like structure, such as natural languages (Devlin et al., 2019; Liu et al., 2019) and images (Doso-
vitskiy et al., 2021; Liu et al., 2021). Due to their great modeling capability, there is a growing
interest in generalizing Transformers to non-Euclidean data like graphs (Dwivedi & Bresson, 2020;

∗The first two authors contribute equally.
†Corresponding author.

1

Published as a conference paper at ICLR 2023

Hop2Token

Attributed network

Token 0 1

…

Sequence of a node

…

…

Attention layer

21

Output

2

0-hop

1-hop

2-hop

.…

Linear projection

Transformer backbone

Transformer encoder

Multilayer perceptron

Prediction labels

…

Attention-based readout layer

Attention-based

readout layer

Token 0

Feature vectors

Figure 1: Model framework of NAGphormer. NAGphormer first uses a novel neighborhood
aggregation module, Hop2Token, to construct a sequence for each node based on the tokens of
different hops of neighbors. Then, NAGphormer learns the node representations using a Transformer
backbone, and an attention-based readout function is developed to aggregate neighborhood informa-
tion of different hops adaptively. An MLP-based module is used in the end for label prediction.

Kreuzer et al., 2021; Ying et al., 2021; Jain et al., 2021). However, graph-structured data generally
contain more complicated properties, including structural topology and attribute features, that cannot
be directly encoded into Transformers as the tokens.

Existing graph Transformers have developed three techniques to address this issue (Min et al., 2022):
introducing structural encoding (Dwivedi & Bresson, 2020; Kreuzer et al., 2021), using GNNs as
auxiliary modules (Jain et al., 2021), and incorporating graph bias into the attention matrix (Ying et al.,
2021). By integrating structural information into the model, graph Transformers exhibit competitive
performance on various graph mining tasks, and outperform GNNs on node classification (Kreuzer
et al., 2021; Chen et al., 2022) and graph classification (Ying et al., 2021; Jain et al., 2021) tasks on
small to mediate scale graphs.

In this work, we observe that existing graph Transformers treat the nodes as independent tokens and
construct a single sequence composed of all the node tokens to train the Transformer model, causing
a quadratic complexity on the number of nodes for the self-attention calculation. Training such a
model on large graphs will cost a huge amount of GPU resources that are generally unaffordable
since the mini-batch training is unsuitable for graph Transformers using a single long sequence as the
input. Meanwhile, effective strategies that make GNNs scalable to large-scale graphs, including node
sampling (Chen et al., 2018; Zou et al., 2019) and approximation propagation (Chen et al., 2020b;
Feng et al., 2022), are not applicable to graph Transformers, as they capture the global attention of all
node pairs and are independent of the message passing mechanism. The current paradigm of graph
Transformers makes it intractable to generalize to large graphs.

To address the above challenge, we propose a novel model dubbed Neighborhood Aggregation
Graph Transformer (NAGphormer) for node classification in large graphs. Unlike existing graph
Transformers that regard the nodes as independent tokens, NAGphormer treats each node as a
sequence and constructs tokens for each node by a novel neighborhood aggregation module called
Hop2Token. The key idea behind Hop2Token is to aggregate neighborhood features from multiple
hops and transform each hop into a representation, which could be regarded as a token. Hop2Token
then constructs a sequence for each node based on the tokens in different hops to preserve the
neighborhood information. The sequences are then fed into a Transformer-based module for learning
the node representations. By treating each node as a sequence of tokens, NAGphormer could be
trained in a mini-batch manner and hence can handle large graphs even on limited GPU resources.

Considering that the contributions of neighbors in different hops differ to the final node representation,
NAGphormer further provides an attention-based readout function to learn the importance of each
hop adaptively. Moreover, we provide theoretical analysis on the relationship between NAGphormer
and an advanced category of GNNs, the decoupled Graph Convolutional Network (GCN) (Dong
et al., 2021; Klicpera et al., 2019; Wu et al., 2019; Chien et al., 2021). The analysis is from the

2

Published as a conference paper at ICLR 2023

perspective of self-attention mechanism and Hop2Token, indicating that NAGphormer is capable
of learning more informative node representations from the multi-hop neighborhoods. We conduct
extensive experiments on various popular benchmarks, including six small datasets and three large
datasets, and the results demonstrate the superiority of the proposed method.

The main contributions of this work are as follows:

• We propose Hop2Token, a novel neighborhood aggregation method that aggregates the
neighborhood features from each hop into a node representation, resulting in a sequence
of token vectors that preserves neighborhood information for different hops. In this way,
we can regard each node in the complex graph data as a sequence of tokens, and treat them
analogously as in natural language processing and computer vision fields.

• We propose a new graph Transformer model, NAGphormer, for the node classification task.
NAGphormer can be trained in a mini-batch manner depending on the output of Hop2Token,
and therefore enables the model to handle large graphs. We also develop an attention-based
readout function to adaptively learn the importance of different-hop neighborhoods to further
boost the model performance.

• We prove that from the perspective of self-attention mechanism, the proposed NAGphormer
can learn more expressive node representations from the multi-hop neighborhoods compared
to an advanced category of GNNs, the decoupled GCN.

• Extensive experiments on benchmark datasets from small to large demonstrate that NAG-
phormer consistently outperforms existing graph Transformers and mainstream GNNs.

2 BACKGROUND

2.1 PROBLEM FORMULATION

Let G = (V,E) be an unweighted and undirected attributed graph, where V = {v1, v2, · · · , vn},
and n = |V |. Each node v ∈ V has a feature vector xv ∈ X, where X ∈ Rn×d is the feature matrix
describing the attribute information of nodes and d the dimension of feature vector. A ∈ Rn×n

represents the adjacency matrix and D the diagonal degree matrix. The normalized adjacency matrix
is defined as Â = D̃−1/2ÃD̃−1/2, where Ã denotes the adjacency matrix with self-loops and D̃
denotes the corresponding degree matrix. The node classification task provides a labeled node set
Vl and an unlabeled node set Vu. Let Y ∈ Rn×c denote the label matrix where c is the number of
classes. Given the labels YVl

, the goal is to predict the labels YVu for unlabeled nodes.

2.2 GRAPH NEURAL NETWORK

Graph Neural Network (GNN) has become a powerful technique to model the graph-structured data.
Graph Convolutional Network (GCN) (Kipf & Welling, 2017) is a typical model of GNN that applies
the first-order approximation of spectral convolution (Defferrard et al., 2016) to aggregate information
of immediate neighbors. A GCN layer can be written as:

H(l+1) = σ(ÂH(l)W(l)), (1)

where H(l) ∈ Rn×d(l)

and W(l) ∈ Rd(l)×d(l+1)

denote the representation of nodes and the learnable
parameter matrix in the l-th layer, respectively. σ(·) denotes the non-linear activation function.

Equation 1 contains two operations, neighborhood aggregation and feature transformation, which are
coupled in the GCN layer. Such a coupled design would lead to the over-smoothing problem (Chen
et al., 2020a) when the number of layers increases, limiting the model to capture deep structural
information. To address this issue, the decoupled GCN (Klicpera et al., 2019; Wu et al., 2019)
separates the feature transformation and neighborhood aggregation in the GCN layer and treats them
as independent modules. A general form of decoupled GCN is described as (Chien et al., 2021):

Z =

K∑
k=0

βkH
(k),H(k) = ÂH(k−1),H(0) = fθ(X), (2)

3

Published as a conference paper at ICLR 2023

where Z denotes the final representations of nodes, H(k) denotes the hidden representations of nodes
at propagation step k, βk denotes the aggregation coefficient of propagation step k, Â denotes the
normalized adjacency matrix, fθ denotes a neural network module and X denotes the raw attribute
feature matrix. Such a decoupled design exhibits high computational efficiency and enables the model
capture deeper structural information. More related works on GNNs are provided in Appendix A.

2.3 TRANSFORMER

The Transformer encoder (Vaswani et al., 2017) contains a sequence of Transformer layers, where
each layer is comprised with a multi-head self-attention (MSA) and a position-wise feed-forward
network (FFN). The MSA module is the critical component that aims to capture the semantic
correlation between the input tokens. For simplicity, we use the single-head self-attention module
for description. Suppose we have an input H ∈ Rn×d for the self-attention module where n is the
number of tokens and d the hidden dimension. The self-attention module first projects H into three
subspaces, namely Q, K and V:

Q = HWQ, K = HWK , V = HWV , (3)

where WQ ∈ Rd×dK ,WK ∈ Rd×dK and WV ∈ Rd×dV are the projection matrices. The output
matrix is calculated as:

H′ = softmax

(
QK⊤
√
dK

)
V. (4)

The attention matrix, softmax
(

QK⊤
√
dK

)
, captures the pair-wise similarity of input tokens in the

sequence. Specifically, it calculates the dot product between each token pair after projection. The
softmax is applied row-wise.

Graph Transformer. The Transformer architecture has attracted increasing attention in graph
representation learning in recent years. The key idea of graph Transformer is to integrate graph
structural information to the Transformer architecture so as to learn the node representations. Existing
graph Transformers could be divided into three categories: (I) Replace the positional encoding with
Laplacian eigenvectors (Dwivedi & Bresson, 2020; Kreuzer et al., 2021) or degree-related feature
vectors (Ying et al., 2021) to capture the structural features of nodes. (II) In addition to positional
encoding, GNNs are used as auxiliary modules to enable the Transformer model to capture structural
information (Jain et al., 2021; Rong et al., 2020). (III) Introduce graph information bias into the
attention score of each node pair, e.g., the shortest-path distance (Ying et al., 2021). We provide a
detailed review of graph Transformer in Appendix A.

3 THE PROPOSED NAGPHORMER

In this section, we present the proposed NAGphormer in details. To handle graphs at scale, we first
introduce a novel neighborhood aggregation module called Hop2Token, then we build NAGphormer
together with structural encoding and attention-based readout function.

3.1 HOP2TOKEN

How to aggregate information from adjacent nodes into a node representation is crucial in reasonably
powerful Graph Neural Network (GNN) architectures. To inherit the desirable properties, we design
Hop2Token considering the neighborhood information of different hops.

For a node v, let N k(v) = {u ∈ V |d(v, u) ≤ k} be its k-hop neighborhood, where d(v, u) represents
the distance of shortest path between v and u. We define N 0(v) = {v}, i.e., the 0-hop neighborhood
is the node itself. In Hop2Token, we transform the k-hop neighborhood N k(v) into a neighborhood
embedding xk

v with an aggregation operator ϕ. In this way, the k-hop representation of a node v can
be expressed as:

xk
v = ϕ(N k(v)). (5)

By Equation 5, we can calculate the neighborhood embeddings for variable hops of a node and further
construct a sequence to represent its neighborhood information, i.e., Sv = (x0

v,x
1
v, ...,x

K
v), where

K is fixed as a hyperparameter. Assume xk
v is a d-dimensional vector, the sequences of all nodes

4

Published as a conference paper at ICLR 2023

Algorithm 1 The Hop2Token Algorithm

Input: Normalized adjacency matrix Â; Feature matrix X; Propagation step K
Output: Sequences of all nodes XG

1: for k = 0 to K do
2: for i = 0 to n do
3: XG[i, k] = X[i];
4: end for
5: X = ÂX;
6: end for
7: return Sequences of all nodes XG;

in graph G will construct a tensor XG ∈ Rn×(K+1)×d. To better illustrate the implementation of
Hop2Token, we decompose XG to a sequence S = (X0,X1, · · · ,XK), where Xk ∈ Rn×d can be
seen as the k-hop neighborhood matrix. Here we define X0 as the original feature matrix X.

In practice, we apply a propagation process similar to the method in (Chien et al., 2021; He et al.,
2022) to obtain the sequence of K-hop neighborhood matrices. Given the normalized adjacency
matrix Â (aka the transition matrix (Gasteiger et al., 2019)) and X, multiplying Â with X aggregates
immediate neighborhood information. Applying this multiplication consecutively allows us to propa-
gate information at larger distances. For example, we can access 2-hop neighborhood information by
Â(ÂX). Thereafter, the k-hop neighborhood matrix can be described as:

Xk = ÂkX. (6)

The detailed implementation is drawn in Algorithm 1. The advantages of Hop2Token is two-fold.
(I) Hop2Token is a non-parametric method. It can be conducted offline before the model training,
and the output of Hop2Token supports mini-batch training. In this way, the model can handle graphs
of arbitrary sizes, thus allowing the generalization of graph Transformer to large-scale graphs. (II)
Encoding k-hop neighborhood of a node into one representation is helpful for capturing the hop-wise
semantic correlation, which is ignored in typical GNNs (Kipf & Welling, 2017; Klicpera et al., 2019;
Chien et al., 2021).

3.2 NAGPHORMER FOR NODE CLASSIFICATION

Figure 1 depicts the architecture of NAGphormer. Given an attributed graph, we first concatenate a
matrix constructed by eigendecomposition to the attribute matrix, and gain a structure-aware feature
matrix. Accordingly, the effective feature vector for node v is extended as xv ∈ Rd′

. The detailed
construction is described in Section 3.3.

Next, we assemble an aggregated neighborhood sequence as Sv = (x0
v,x

1
v, ...,x

K
v) by applying

Hop2Token. Then we map Sv to the hidden dimension dm of the Transformer with a learnable linear
projection:

Z(0)
v =

[
x0
vE; x1

vE; · · · ; xK
v E

]
, (7)

where E ∈ Rd′×dm and Z
(0)
v ∈ R(K+1)×dm .

Then, we feed the projected sequence into the Transformer encoder. The building blocks of the
Transformer contain multi-head self-attention (MSA) and position-wise feed-forward network (FFN).
We follow the implementation of the vanilla Transformer encoder described in (Vaswani et al., 2017),
while LayerNorm (LN) is applied before each block (Xiong et al., 2020). And the FFN consists of
two linear layers with a GELU non-linearity:

Z′(ℓ)
v = MSA

(
LN

(
Z(ℓ−1)

v

))
+ Z(ℓ−1)

v , (8)

Z(ℓ)
v = FFN

(
LN

(
Z′(ℓ)

v

))
+ Z′(ℓ)

v , (9)

where ℓ = 1, . . . , L implies the ℓ-th layer of the Transformer.

In the end, a novel readout function is applied to the output of the Transformer encoder. Through sev-
eral Transformer layers, the corresponding output Z(ℓ)

v contains the embeddings for all neighborhoods

5

Published as a conference paper at ICLR 2023

of node v. It requires a readout function to aggregate the information of different neighborhoods
into one embedding. Common readout functions include summation and mean (Hamilton et al.,
2017). However, these methods ignore the importance of different neighborhoods. Inspired by
GAT (Veličković et al., 2018), we propose an attention-based readout function to learn such impor-
tance by computing the attention coefficients between 0-hop neighborhood (i.e., the node itself) and
every other neighborhood. For detailed implementation, please refer to Section 3.3.

The time and space complexity of NAGphormer are O(n(K + 1)2d) and O(b(K + 1)2 + b(K +
1)d+ d2L), respectively (n: number of nodes, K: number of hops, d: dimension of feature vector,
L: number of layers, b: batch size). The detailed complexity analysis is provided in Appendix B.

3.3 IMPLEMENTATION DETAILS

Structural encoding. Besides the attribute information of nodes, the structural information of
nodes is also a crucial feature for graph mining tasks. We adopt the eigenvectors of Laplacian
matrix of the graph for capturing the structural information of nodes. Specifically, we select the
eigenvectors corresponding to the s smallest non-trivial eigenvalues to construct the structure matrix
U ∈ Rn×s (Dwivedi & Bresson, 2020; Kreuzer et al., 2021). Then we combine the original feature
matrix X with the structure matrix U to preserve both the attribute and structural information:

X′ = X∥U. (10)

Here ∥ indicates the concatenation operator and X′ ∈ Rn×(d+s) denotes the fused feature matrix,
which is then used as the input of Hop2Token for calculating the information of different-hop
neighborhoods.

Attention-based readout function. For the output matrix Z ∈ R(K+1)×dm of a node, Z0 is the
token representation of the node itself and Zk is its k-hop representation. We calculate the normalized
attention coefficients for its k-hop neighborhood:

αk =
exp((Z0∥Zk)W

⊤
a)∑K

i=1 exp((Z0∥Zi)W⊤
a)

, (11)

where Wa ∈ R1×2dm denotes the learnable projection and i = 1, . . . ,K. Therefore, the readout
function takes the correlation between each neighborhood and the node representation into account.
The node representation is finally aggregated as follows:

Zout = Z0 +

K∑
k=1

αkZk. (12)

3.4 THEORETICAL ANALYSIS OF NAGPHORMER

In this subsection, we discuss the relation of NAGphormer and decoupled GCN through the lens of
the node representations of Hop2Token and the self-attention mechanism. We theoretically show that
NAGphormer could learn more informative node representations from the multi-hop neighborhoods
than decoupled GCN does.

Fact 1. From the perspective of the output node representations of Hop2Token, we can regard
the decoupled GCN as applying a self-attention mechanism with a fixed attention matrix S ∈
R(K+1)×(K+1), where SK,k = βk (k ∈ {0, ...,K}) and other elements are all zeroes.

Here K denotes the total propagation step, k represents the current propagation step, βk represents
the aggregation weight at propagation step k in the decoupled GCN. The detailed proof of Fact 1 is
provided in Appendix C. Fact 1 indicates that the decoupled GCN, an advanced category of GNN,
only captures partial information of the multi-hop neighborhoods through the incomplete attention
matrix. Moreover, the fixed attention coefficients of βk (k ∈ {0, ...,K}) for all nodes also limit the
model to learn the node representations adaptively from their individual neighborhood information.

In contrast, our proposed NAGphormer first utilizes the self-attention mechanism to learn the repre-
sentations of different-hop neighborhoods based on their semantic correlation. Then NAGphormer
develops an attention-based readout function to adaptively learn the node representations from their
neighborhood information, which helps the model learn more informative node representations.

6

Published as a conference paper at ICLR 2023

Table 1: Comparison of all models in terms of mean accuracy ± stdev (%) on small-scale datasets.
The best results appear in bold. OOM indicates the out-of-memory error.

Method Pubmed CoraFull Computer Photo CS Physics

GCN 86.54 ± 0.12 61.76 ± 0.14 89.65 ± 0.52 92.70 ± 0.20 92.92 ± 0.12 96.18 ± 0.07
GAT 86.32 ± 0.16 64.47 ± 0.18 90.78 ± 0.13 93.87 ± 0.11 93.61 ± 0.14 96.17 ± 0.08
APPNP 88.43 ± 0.15 65.16 ± 0.28 90.18 ± 0.17 94.32 ± 0.14 94.49 ± 0.07 96.54 ± 0.07
GPRGNN 89.34 ± 0.25 67.12 ± 0.31 89.32 ± 0.29 94.49 ± 0.14 95.13 ± 0.09 96.85 ± 0.08

GraphSAINT 88.96 ± 0.16 67.85 ± 0.21 90.22 ± 0.15 91.72 ± 0.13 94.41 ± 0.09 96.43 ± 0.05
PPRGo 87.38 ± 0.11 63.54 ± 0.25 88.69 ± 0.21 93.61 ± 0.12 92.52 ± 0.15 95.51 ± 0.08
GRAND+ 88.64 ± 0.09 71.37 ± 0.11 88.74 ± 0.11 94.75 ± 0.12 93.92 ± 0.08 96.47 ± 0.04

GT 88.79 ± 0.12 61.05 ± 0.38 91.18 ± 0.17 94.74 ± 0.13 94.64 ± 0.13 97.05 ± 0.05
Graphormer OOM OOM OOM 92.74 ± 0.14 OOM OOM
SAN 88.22 ± 0.15 59.01 ± 0.34 89.83 ± 0.16 94.86 ± 0.10 94.51 ± 0.15 OOM
GraphGPS 88.94 ± 0.16 55.76 ± 0.23 OOM 95.06 ± 0.13 93.93 ± 0.12 OOM

NAGphormer 89.70 ± 0.19 71.51 ± 0.13 91.22 ± 0.14 95.49 ± 0.11 95.75 ± 0.09 97.34 ± 0.03

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Here we briefly introduce datasets and baselines in experiments. More details are in Appendix D.

Datasets. We conduct experiments on nine widely used datasets of various scales, including six
small-scale datasets and three relatively large-scale datasets. For small-scale datasets, we adopt
Pubmed, CoraFull, Computer, Photo, CS and Physics from the Deep Graph Library (DGL). We apply
60%/20%/20% train/val/test random splits for small-scale datasets. For large-scale datasets, we adopt
AMiner-CS, Reddit and Amazon2M from (Feng et al., 2022). The splits of large-scale datasets are
followed the settings from (Feng et al., 2022). Detailed information is provided in Appendix D.1.

Baselines. We compare NAGphormer with twelve advanced baselines, including: (I) four full-
batch GNNs: GCN (Kipf & Welling, 2017), GAT (Veličković et al., 2018), APPNP (Klicpera
et al., 2019) and GPRGNN (Chien et al., 2021); (II) three scalable GNNs: GraphSAINT (Zeng
et al., 2020), PPRGo (Bojchevski et al., 2020) and GRAND+ (Feng et al., 2022); (III) five graph
Transformers1: GT (Dwivedi & Bresson, 2020), SAN (Kreuzer et al., 2021), Graphormer (Ying et al.,
2021), GraphGPS (Rampásek et al., 2022) and Gophormer (Zhao et al., 2021)2.

4.2 COMPARISON ON SMALL-SCALE DATASETS

We conduct 10 trials with random seeds for each model and take the mean accuracy and standard
deviation for comparison on small-scale datasets, and the results are reported in Table 1. From the
experimental results, we can observe that NAGphormer outperforms the baselines consistently on
all these datasets. For the superiority over GNN-based methods, it is because NAGphormer utilizes
Hop2Token and the Transformer model to capture the semantic relevance of different hop neighbors
overlooked in most GNNs, especially compared to APPNP and GPRGNN, which are two decoupled
GCNs. Besides, the performance of NAGphormer also surpasses graph Transformer-based methods,
indicating that leveraging the local information is beneficial for node classification. In particular,
NAGphormer outperforms GT and SAN, which also introduce the eigenvectors of Laplacian matrix
as the structural encoding into Transformers for learning the node representations, demonstrating
the superiority of our proposed NAGphormer. Moreover, We observe that Graphormer, SAN, and
GraphGPS suffer from the out-of-memory error even in some small graphs, further demonstrating the
necessity of designing a scalable graph Transformer for large-scale graphs.

1Another recent graph Transformer, SAT (Chen et al., 2022), is not considered as it reports OOM even in our
small-scale graphs.

2We compare the performance of our NAGphormer with Gophormer on the datasets reported in the original
paper (Zhao et al., 2021) in Appendix E since the authors did not make their code available, and we implemented
their algorithm but could not reproduce the same results as reported in their paper. Nevertheless, it still shows
that our results are very competitive with their reported results.

7

Published as a conference paper at ICLR 2023

Table 2: Comparison of all models in terms of mean accuracy ± stdev (%) on large-scale datasets.
The best results appear in bold.

Method AMiner-CS Reddit Amazon2M

PPRGo 49.07 ± 0.19 90.38 ± 0.11 66.12 ± 0.59
GraphSAINT 51.86 ± 0.21 92.35 ± 0.08 75.21 ± 0.15
GRAND+ 54.67 ± 0.25 92.81 ± 0.03 75.49 ± 0.11

NAGphormer 56.21 ± 0.42 93.58 ± 0.05 77.43 ± 0.24

Table 3: The accuracy (%) with or without structural encoding.
Pubmed CoraFull CS Computer Photo Physics Aminer-CS Reddit Amazon2M

W/O-SE 89.06 70.42 95.52 90.44 95.02 97.10 55.64 93.47 76.98
With-SE 89.70 71.51 95.75 91.22 95.49 97.34 56.21 93.58 77.43

Gain +0.64 +1.09 +0.23 +0.78 +0.47 +0.24 +0.57 +0.11 +0.45

4.3 COMPARISON ON LARGE-SCALE DATASETS

To verify the scalability of NAGphormer, we continue the comparison on three large-scale datasets.
For the baselines, we only compare with three scalable GNNs, as existing graph Transformers can not
work on such large-scale datasets due to their high computational cost. The results are summarized in
Table 2. NAGphormer consistently outperforms the scalable GNNs on all datasets, indicating that
NAGphormer can better preserve the local information of nodes and is capable of handling the node
classification task in large graphs. The cost of training the model is reported in Appendix G, which
demonstrates the efficiency of NAGphormer for handling large graphs.

4.4 ABLATION STUDY

To analyze the effectiveness of structural encoding and attention-based readout function, we perform
a series of ablation studies on all datasets.

Structural encoding. We compare our proposed NAGphormer to its variant without the structural
encoding module to measure the gain of structural encoding. The results are summarized in Table 3.
We can observe that the gains of adding structural encoding vary in different datasets, since different
graphs exhibit different topology structure. Therefore, the gain of structural encoding is sensitive
to the structure of graphs. These results also indicate that introducing the structural encoding can
improve the model performance for the node classification task.

Attention-based readout function. We conduct a comparative experiment between the proposed
attention-based readout function ATT. (Equation 11) with previous readout functions, i.e., SIN. and
SUM.. The function of SIN. utilizes the corresponding representation of the node itself learned by
the Transformer layer as the final output to predict labels. And SUM. can be regarded as aggregating
all information of different hops equally. From Figure 2, we observe that ATT. outperforms other
readout functions on small-scale datasets, indicating that aggregating information from different
neighborhoods adaptively is beneficial to learn more expressive node representations, further im-
proving the model performance on node classification. Due to the page limitation, the results on
large-scale datasets which exhibit similar observations are provided in Appendix F.

4.5 PARAMETER STUDY

To further evaluate the performance of NAGphormer, we study the influence of two key parameters:
the number of propagation steps K and the number of Transformer layers L. Specifically, we perform
experiments on AMiner-CS, Reddit and Amazon2M by setting different values of K and L.

On parameter K. We fix L = 1 and vary the number of propagation steps K in {4, 6, · · · , 20}
Figure 3(a) reports the model performance. We can observe that the values of K are different for
each dataset to achieve the best performance since different networks exhibit different neighborhood
structures. Besides, we can also observe that the model performance does not decline significantly
even if K is relatively large to 20. For instance, the performance on Reddit dataset changes slightly
(< 0.1%) with the increment of K, which indicates that learning the node representations from the

8

Published as a conference paper at ICLR 2023

Figure 2: The performance of NAGphormer via different readout functions.

4 6 8 10 12 14 16 18 20
50.00

52.50

55.00

A
cc

ur
ac

y
(%

)
Aminer-CS

4 6 8 10 12 14 16 18 20

93.50

93.60

93.70
Reddit

4 6 8 10 12 14 16 18 20

75.00

77.50

Amanzon2M

(a) On the number of propagation steps K

1 2 3 4 5

54.00

56.00

A
cc

ur
ac

y
(%

)

Aminer-CS

1 2 3 4 5

93.00

93.50

Reddit

1 2 3 4 5
75.00

76.00

77.00

Amanzon2M

(b) On the number of Transformer layers L

Figure 3: Performance of NAGphormer on different parameters.

information of multi-hop neighborhoods via the self-attention mechanism and attention-based readout
function can alleviate the impact of over-smoothing or over-squashing problems. In addition, the
model performance changes differently on three datasets with the increment of K. The reason may
be that these datasets are different types of networks and have diverse properties. This observation
also indicates that neighborhood information on different types of networks has different effects on
the model performance. In practice, we set K = 16 for AMiner-CS, and set K = 10 for others since
the large propagation step will bring the high time cost of Hop2Token on Amanzon2M.

On parameter L. We fix the best value of K and vary L from 1 to 5 on each dataset. The results are
shown in Figure 3(b). Generally speaking, a smaller L can achieve a high accuracy while a larger L
degrades the performance of NAGphormer. Such a result can attribute to the fact that a larger L is
more likely to cause over-fitting. we set L = 3 for AMiner-CS, and set L = 1 for other datasets.

5 CONCLUSION

We propose NAGphormer, a novel and powerful graph Transformer for the node classification task.
By utilizing a novel module Hop2Token to extract the features of different-hop neighborhoods
and transform them into tokens, NAGphormer treats each node as a sequence composed of the
corresponding neighborhood tokens. In this way, graph structural information of each node could
be carefully preserved. Meanwhile, such a tokenized design enables NAGphormer to be trained in
a mini-batch manner, enabling NAGphormer handle large-scale graphs. In addition, NAGphormer
develops an attention-based readout function for learning the node representation from multi-hop
neighborhoods adaptively, further boosting the model performance. We also provide theoretical
analysis indicating that NAGphormer can learn more expressive node representations than the
decoupled GCN. Experiments on various datasets from small to large demonstrate the superiority of
NAGphormer over representative graph Transformers and Graph Neural Networks. Our tokenized
design makes graph Transformers possible to handle large graphs. We wish our work inspire more
works in this direction, and in our future work, we will generalize NAGphormer to other graph mining
tasks, such as graph classification.

ACKNOWLEDGMENTS

This work is supported by National Natural Science Foundation (U22B2017,62076105).

9

Published as a conference paper at ICLR 2023

REFERENCES

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
In Proceedings of the International Conference on Learning Representations, 2021.

Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin Blais, Benedek
Rózemberczki, Michal Lukasik, and Stephan Günnemann. Scaling graph neural networks with ap-
proximate pagerank. In Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2020.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2020a.

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph
representation learning. In International Conference on Machine Learning, pp. 3469–3489, 2022.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast learning with graph convolutional networks via
importance sampling. In Proceedings of the International Conference on Learning Representations,
2018.

Ming Chen, Zhewei Wei, Bolin Ding, Yaliang Li, Ye Yuan, Xiaoyong Du, and Ji-Rong Wen. Scalable
graph neural networks via bidirectional propagation. In Proceedings of the Advances in Neural
Information Processing Systems, 2020b.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In Proceedings of the International Conference on Machine Learning,
2020c.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. In Proceedings of the International Conference on Learning Representations,
2021.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Proceedings of the Advances in Neural Information
Processing Systems, pp. 3837–3845, 2016.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT, 2019.

Hande Dong, Jiawei Chen, Fuli Feng, Xiangnan He, Shuxian Bi, Zhaolin Ding, and Peng Cui. On
the equivalence of decoupled graph convolution network and label propagation. In Proceedings of
the Web Conference, pp. 3651–3662, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In Proceedings of the International Conference on Learning Representations, 2021.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
CoRR, abs/2012.09699, 2020.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Yihong Eric Zhao, Jiliang Tang, and Dawei Yin. Graph
neural networks for social recommendation. In Proceedings of the Web Conference, 2019.

Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny
Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning on graphs.
In Proceedings of the Advances in Neural Information Processing Systems, 2020.

10

Published as a conference paper at ICLR 2023

Wenzheng Feng, Yuxiao Dong, Tinglin Huang, Ziqi Yin, Xu Cheng, Evgeny Kharlamov, and Jie
Tang. Grand+: Scalable graph random neural networks. arXiv preprint arXiv:2203.06389, 2022.

Johannes Gasteiger, Stefan Weiß enberger, and Stephan Günnemann. Diffusion improves graph
learning. In Proceedings of the Advances in Neural Information Processing Systems, 2019.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In Proceedings of the International Conference on
Machine Learning, 2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Proceedings of the Advances in Neural Information Processing Systems, 2017.

Qiuting He, Jinsong Chen, Hao Xu, and Kun He. Structural robust label propagation on homogeneous
graphs. In IEEE International Conference on Data Mining, 2022.

Wenbing Huang, Yu Rong, Tingyang Xu, Fuchun Sun, and Junzhou Huang. Tackling over-smoothing
for general graph convolutional networks. arXiv preprint arXiv:2008.09864, 2020.

Md. Shamim Hussain, Mohammed J. Zaki, and Dharmashankar Subramanian. Global self-attention
as a replacement for graph convolution. In Proceedings of the ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2022.

Paras Jain, Zhanghao Wu, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion Stoica.
Representing long-range context for graph neural networks with global attention. In Proceedings
of the Advances in Neural Information Processing Systems, 2021.

Di Jin, Ziyang Liu, Weihao Li, Dongxiao He, and Weixiong Zhang. Graph convolutional networks
meet markov random fields: Semi-supervised community detection in attribute networks. In
Proceedings of the AAAI Conference on Artificial Intelligence, 2019.

Wei Jin, Tyler Derr, Yiqi Wang, Yao Ma, Zitao Liu, and Jiliang Tang. Node similarity preserving
graph convolutional networks. In Proceedings of the ACM International Conference on Web Search
and Data Mining, 2021.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In Proceedings of the International Conference on Learning Representations, 2017.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph
neural networks meet personalized pagerank. In Proceedings of the International Conference on
Learning Representations, 2019.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. In Proceedings of the Advances in Neural
Information Processing Systems, 2021.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. CoRR, abs/2103.14030,
2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In Proceedings of the
International Conference on Learning Representations, 2019.

Weigang Lu, Yibing Zhan, Ziyu Guan, Liu Liu, Baosheng Yu, Wei Zhao, Yaming Yang, and Dacheng
Tao. Skipnode: On alleviating over-smoothing for deep graph convolutional networks. arXiv
preprint arXiv:2112.11628, 2021.

Erxue Min, Runfa Chen, Yatao Bian, Tingyang Xu, Kangfei Zhao, Wenbing Huang, Peilin Zhao,
Junzhou Huang, Sophia Ananiadou, and Yu Rong. Transformer for graphs: An overview from
architecture perspective. arXiv preprint arXiv:2202.08455, 2022.

11

Published as a conference paper at ICLR 2023

Galileo Namata, Ben London, Lise Getoor, Bert Huang, and UMD EDU. Query-driven active
surveying for collective classification. In Proceedings of the International Workshop on Mining
and Learning with Graphs, 2012.

Ladislav Rampásek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. In Proceedings of the
Advances in Neural Information Processing Systems, 2022.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang.
Self-supervised graph transformer on large-scale molecular data. In Proceedings of the Advances
in Neural Information Processing Systems, 2020.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls of
graph neural network evaluation. Relational Representation Learning Workshop, NeurIPS, 2018.

Qingyun Sun, Jianxin Li, Haonan Yuan, Xingcheng Fu, Hao Peng, Cheng Ji, Qian Li, and Philip S
Yu. Position-aware structure learning for graph topology-imbalance by relieving under-reaching
and over-squashing. In Proceedings of the ACM International Conference on Information &
Knowledge Management, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the Advances in Neural
Information Processing Systems, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In Proceedings of the International Conference on Learning
Representations, 2018.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplify-
ing graph convolutional networks. In Proceedings of the International Conference on Machine
Learning, 2019.

Qitian Wu, Wentao Zhao, Zenan Li, David Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification. In Proceedings of the Advances in Neural
Information Processing Systems, 2022.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture.
In Proceedings of the International Conference on Machine Learning, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks. In Proceedings of the International Conference on Learning Representations, 2019.

Chaoqi Yang, Ruijie Wang, Shuochao Yao, Shengzhong Liu, and Tarek Abdelzaher. Revisiting
over-smoothing in deep gcns. arXiv preprint arXiv:2003.13663, 2020.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation. In Proceedings of the
Advances in Neural Information Processing Systems, 2021.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor K. Prasanna.
Graphsaint: Graph sampling based inductive learning method. In Proceedings of the International
Conference on Learning Representations, 2020.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In Proceedings of
the Advances in Neural Information Processing Systems, 2018.

Jianan Zhao, Chaozhuo Li, Qianlong Wen, Yiqi Wang, Yuming Liu, Hao Sun, Xing Xie, and Yanfang
Ye. Gophormer: Ego-graph transformer for node classification. arXiv preprint arXiv:2110.13094,
2021.

12

Published as a conference paper at ICLR 2023

Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-dependent
importance sampling for training deep and large graph convolutional networks. Proceedings of the
Advances in Neural Information Processing Systems, 2019.

13

Published as a conference paper at ICLR 2023

A RELATED WORK

A.1 GRAPH NEURAL NETWORK

Graph Neural Network (GNN) has become a powerful technique for modeling the graph-structured
data. Based on the message passing mechanism, GNN can learn the node representations from
topology features and attribute features simultaneously. Typical GNNs, such as GCN (Kipf &
Welling, 2017) and GAT (Veličković et al., 2018), leverage the features of immediate neighbors via
different aggregation strategies to learn the node representations, exhibiting competitive performance
on various graph mining tasks. However, typical GNNs obey the coupled design that binds the
aggregation module and the feature transformation module in each GNN layer, leading to the over-
smoothing (Chen et al., 2020a) and over-squashing issues (Alon & Yahav, 2021) on high-layer GNNs.
Such a problem limits the model’s ability to capture deep graph structural information. A reasonable
solution is to decouple the aggregation and feature transformation modules in a GNN layer, treating
them as independent modules (Klicpera et al., 2019; Wu et al., 2019; Chien et al., 2021), termed
decoupled Graph Convolutional Network (decoupled GCN) (Dong et al., 2021). Decoupled GCN
utilizes various propagation methods, such as personalized PageRank Klicpera et al. (2019) and
random walk Wu et al. (2019), to aggregate features of multi-hop neighborhoods and further generate
the node representations. Since the nonlinear activation functions between GNN layers are removed,
decoupled GCN exhibits high computational efficiency and has become an advanced type of GNN in
recent years. Besides the decoupled strategy, recent works (Yang et al., 2020; Lu et al., 2021; Huang
et al., 2020; Sun et al., 2022) make efforts to address the over-smoothing and over-squashing issues by
developing novel training tricks (Yang et al., 2020; Huang et al., 2020) or new graph neural network
architectures (Lu et al., 2021; Sun et al., 2022). By introducing the carefully designed techniques, the
impact of over-smoothing and over-squashing problems in GNNs could be well alleviated.

Scalable GNN. Most GNNs (Chen et al., 2020c; Jin et al., 2021; Kipf & Welling, 2017; Veličković
et al., 2018) require the entire adjacency matrix as the input during training. In this way, when
applying to large-scale graphs, the cost of training is too high to afford. There are two categories of
strategies for generalizing GNN to large-scale graphs:

(I) The node sampling strategy (Hamilton et al., 2017; Chiang et al., 2019; Zou et al., 2019; Zeng
et al., 2020) that sample partial nodes from the whole graph via different methods, such as random
sampling from neighbors (Hamilton et al., 2017) and sampling from GNN layers (Zou et al., 2019),
to reduce the size of nodes for model training.

(II) The approximation propagation (Chen et al., 2020b; Feng et al., 2022; Bojchevski et al., 2020)
that accelerates the propagation operation via several approximation methods, such as approximate
PageRank (Bojchevski et al., 2020) and sub-matrix approximation (Feng et al., 2022).

However, by designing various sampling-based or approximation-based methods to reduce the training
cost, these models will inevitably lead to information loss and somehow restrict their performance on
large-scale networks.

A.2 GRAPH TRANSFORMER

In existing graph Transformers, there are mainly three strategies to incorporate graph structural
information into the Transformer architecture so as to learn the node representations:

(I) Extracting the positional embedding from graph structure. Dwivedi et al. (Dwivedi & Bresson,
2020) utilize Laplacian eigenvectors to represent positional encodings of the original Transformer
and fuse them with the raw attributes of nodes as the input. Derived from (Dwivedi & Bresson,
2020), Devin et al. (Kreuzer et al., 2021) leverage the full spectrum of Laplacian matrix to learn the
positional encodings.

(II) Combining GNN and Transformer. In addition to representing structural information by the
eigenvectors, Wu et al. (Jain et al., 2021) regard GNNs as an auxiliary module to extract fixed
local structural information of nodes and further feed them into the Transformer to learn long-range
pairwise relationships. Chen et al. (Chen et al., 2022) utilize a GNN model as the structure extractor
to learn different types of structural information, such as k−subtree and k−subgraph, to capture the
structure similarity of node pairs via the self-attention mechanism. Rampášek et al. (Rampásek et al.,

14

Published as a conference paper at ICLR 2023

2022) develop a hybrid layer that contains a GNN layer and a self-attention layer to capture both
local and global information.

(III) Integrating the graph structural bias into the self-attention matrix. There are several efforts
to transform various graph structure features into attention biases and integrate them into the self-
attention matrix to enable the Transformer to capture graph structural information. Ying et al. (Ying
et al., 2021) propose a spatial encoding method that models the structural similarity of node pairs
based on the length of their shortest path. Zhao et al. (Zhao et al., 2021) propose a proximity-enhanced
attention matrix by considering the relationship of node pairs in different neighborhoods. Besides, by
modeling edge features in chemical and molecular graphs, Dwivedi et al. (Dwivedi & Bresson, 2020)
extend graph Transformers to edge feature representation by injecting them into the self-attention
module of Transformers. Hussain et al. (Hussain et al., 2022) utilize the edge features to strengthen
the expressiveness of the attention matrix. Wu et al. (Wu et al., 2022) introduce the topology structural
information as the relational bias to strengthen the original attention matrix.

Nevertheless, except GraphGPS (Rampásek et al., 2022) and Nodeformer (Wu et al., 2022) whose
complexities are linear to the number of nodes and edges, the aforementioned methods adopt the
fully-connected attention mechanism upon all the node pairs, in which the spatial complexity is
quadratic with the number of nodes. Such high complexity makes these methods hard to directly
handle graph mining tasks on large-scale networks with millions of nodes and edges. A recent
work (Zhao et al., 2021) samples several ego-graphs of each node and then utilizes Transformer
to learn the node representations on these ego-graphs so as to reduce the computational cost of
model training. However, the sampling process is still time-consuming in large graphs. Moreover,
the sampled ego-graphs only contain limited neighborhood information due to the fixed and small
sampled graph size for all nodes, which is insufficient to learn the informative node representations.

B COMPLEXITY ANALYSIS OF NAGPHORMER

This section provides the complexity analysis of NAGphormer on time and space.

Time complexity. The time complexity of NAGphormer mainly depends on the self-attention module
of the Transformer. So the computational complexity of NAGphormer is O(n(K + 1)2d), where
n denotes the number of nodes, K denotes the number of hops and d the dimension of parameter
matrix (i.e., feature vector).

Space complexity. The space complexity is based on the number of model parameters and the outputs
of each layer. The first part is mainly on the Transformer layer O(d2L), where L is the number of
Transformer layers. The second part is on the attention matrix and the hidden node representations,
O(b(K + 1)2 + b(K + 1)d), where b denotes the batch size. Thus, the total space complexity is
O(b(K + 1)2 + b(K + 1)d+ d2L).

C PROOF OF FACT 1

Here we provide the detailed proof for Fact 1.

Fact 1. From the perspective of the output node representations of Hop2Token, we can regard
the decoupled GCN as applying a self-attention mechanism with a fixed attention matrix S ∈
R(K+1)×(K+1), where SK,k = βk (k ∈ {0, ...,K}) and other elements are all zeroes.

Proof. First, both Hop2Token and decouple GCN utilize the same propagation process to obtain the
information of different-hop neighborhoods. So we use the same symbol H(k)

i ∈ R1×d to represent
the neighborhood information of node i at propagation step k for brevity.

For an arbitrary node i, each element Zi,m(m ∈ {1, ..., d}) of the output representation Zi ∈ R1×d

learned by the decoupled GCN according to Equation 2 is calculated as:

Zi,m =

K∑
k=0

βkH
(k)
i,m. (13)

15

Published as a conference paper at ICLR 2023

Table 4: Statistics on datasets.
Dataset # Nodes # Edges # Features # Classes

Pubmed 19,717 44,324 500 3
CoraFull 19,793 126,842 8,710 70
Computer 13,752 491,722 767 10
Photo 7,650 238,163 745 8
CS 18,333 163,788 6,805 15
Physics 34,493 495,924 8,415 5
AMiner-CS 593,486 6,217,004 100 18
Reddit 232,965 11,606,919 602 41
Amazon2M 2,449,029 61,859,140 100 47

On the other hand, the output Xi ∈ R(K+1)×d of Hop2Token in the matrix form for node i is
described as:

Xi =

H

(0)
i,0 H

(0)
i,1 · · · H

(0)
i,d

H
(1)
i,0 H

(1)
i,1 · · · H

(1)
i,d

...
...

. . .
...

H
(K)
i,0 H

(K)
i,1 · · · H

(K)
i,d

 . (14)

Suppose we have the following attention matrix S ∈ R(K+1)×(K+1):

S =

0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
β0 β1 · · · βK

 . (15)

Following Equation 4, the output matrix T ∈ R(K+1)×d learned by the self-attention mechanism can
be described as:

T = SXi =

0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
γ0 γ1 · · · γd

 , (16)

where γm =
∑K

k=0 βkH
(k)
i,m(m ∈ {1, ..., d}).

Further, we can obtain each element Tfinal
m (m ∈ {1, ..., d}) of the final representation Tfinal ∈

R1×d of node i by using a summation readout function:

Tfinal
m =

K∑
k=0

Tk,m = (0 + 0 + · · ·+ γm) =

K∑
k=0

βkH
(k)
i,m = Zi,m. (17)

Finally, we can obtain Fact 1.

D EXPERIMENTAL DETAILS

D.1 DATASET DESCRIPTION

Here we provide detailed descriptions for each dataset. Pubmed (Namata et al., 2012), Cora-
Full (Shchur et al., 2018) and AMiner-CS (Feng et al., 2020) are citation networks in which nodes
represent papers and edges represent citations. Computer (Shchur et al., 2018), Photo (Shchur et al.,
2018), Amazon2M (Chiang et al., 2019) are co-purchase networks, where nodes indicate goods and
edges indicate that the two connected goods are frequently bought together. CS (Shchur et al., 2018)
and Physics (Shchur et al., 2018) are co-authorship networks, where nodes denote authors and edges

16

Published as a conference paper at ICLR 2023

Table 5: Further comparison of NAGphormer and Gophormer. The best results appear in bold.
Cora Citeseer Pumbed Blogcatalog DBLP Flickr

Gophormer 87.85 80.23 89.40 96.03 85.20 91.51
NAGphormer 88.15 80.12 89.70 96.73 85.95 91.80

50.00

52.00

54.00

56.00

58.00 SIN.
SUM.
ATT.

A
cc

ur
ac

y
(%

)

AMiner-CS
92.50

93.00

93.50

94.00

Reddit

74.00

75.00

76.00

77.00

78.00

Amazon2M

Figure 4: The performance of different readout functions on large-scale datasets.

represent that authors have co-authored at least one paper. Reddit (Hamilton et al., 2017) is a social
network where nodes represent posts and edges denote that the same user has commented on the two
connected posts. The statistics on datasets are reported in Table 4.

D.2 IMPLEMENTATION DETAILS

Referring to the recommended settings in the official implementations, we perform hyperparameter
tuning for each baseline. For the model configuration of NAGphormer, we try the number of
Transformer layers in {1, 2, ..., 5}, the hidden dimension in {128, 256, 512}, and the propagation steps
in {2, 3, ..., 20}. Parameters are optimized with the AdamW (Loshchilov & Hutter, 2019) optimizer,
using a learning rate of in {1e − 3, 5e − 3, 1e − 4} and weight decay of {1e − 4, 5e − 4, 1e − 5}.
We also search the dropout rate in {0.1, 0.3, 0.5}. The batch size is set to 2000. The training process
is early stopped within 50 epochs. All experiments are conducted on a Linux server with 1 I9-9900k
CPU, 1 RTX 2080TI GPU and 64G RAM.

E FURTHER COMPARISON WITH GOPHORMER

Gophormer (Zhao et al., 2021) is a recent work on arXiv that generalizes the Transformer on graphs
for the node classification task. Since the code or model of Gophormer is not available, for the
comparison of NAGphormer and Gophormer, we run NAGphormer on the datasets used in the original
paper (Zhao et al., 2021) with the same ratio of random splits. Our results in terms of accuracy (%)
are reported in Table 5. For Gophormer, we use their reported results (Zhao et al., 2021). We can
observe that NAGphormer outperforms Gophormer on all datasets except Citeseer even on their data
using their reported results, demonstrating that NAGphormer is more potent than Gophormer on the
node classification task.

F ABLATION STUDY OF READOUT FUNCTION ON LARGE-SCALE DATASETS

Figure 4 exhibits the performance of NAGphormer via different readout functions on large-scale
datasets. The results show that our proposed attention-based readout function consistently outper-
forms others (SIN. and SUM.) on three large-scale datasets, demonstrating that learning the node
representations from multi-hop neighborhoods adaptively can improve the model performance for the
node classification task.

17

Published as a conference paper at ICLR 2023

Table 6: The training cost on large-scale graphs in terms of GPU memory (MB) and running time (s).
Aminer-CS Reddit Amazon2M

Memory (MB) Time (s) Memory (MB) Time (s) Memory (MB) Time (s)
GraphSAINT 1,641 23.67 2,565 43.15 5,317 334.08
PPRGo 1,075 14.21 1,093 35.73 1,097 152.62
GRAND+ 1,091 21.41 1,213 197.97 1,123 207.85
NAGphormer 1,827 19.87 1,925 20.72 2,035 58.66

G EFFICIENCY EXPERIMENTS ON LARGE-SCALE GRAPHS

In this section, we validate the efficiency of NAGphormer on large-scale graphs. Specifically, we
compare the training cost in terms of running time (s) and GPU memory (MB) of NAGphormer
and three scalable GNNs, PPRGo, GraphSAINT and GRAND+. For scalable GNNs, We adopt the
official implements on Github. However, all methods contain diverse pre-processing steps built on
different programming language frameworks, such as approximate matrix-calculation based on C++
framework in GRAND+. To ensure the fair comparison, we report the running time cost including the
training stage and inference stage since these stages of all models are based on Pytorch framework.
The results are summarized in Table 6.

From the experimental results, we can observe that NAGphormer shows high efficiency when dealing
with large graphs. For instance, on Amazon2M which contains two million nodes and 60 million
edges, NAGphormer achieves almost 3× acceleration compared with the second fastest model PPRGo.
The reason is that the time complexity of NAGphormer is mainly depended on the number of nodes
and has nothing with the number of edges, while the time consumption of other methods is related
to the number of edges and nodes since these methods involve the propagation operation during
the training and inference stages. As for the GPU memory cost, since NAGphormer utilizes the
mini-batch training, the GPU memory cost is determined by the batch size. Hence, the GPU memory
cost of NAGphormer is affordable by choosing a proper batch size even on large-scale graphs.

18

	Introduction
	Background
	Problem Formulation
	Graph Neural Network
	Transformer

	The Proposed NAGphormer
	Hop2Token
	NAGphormer for Node Classification
	Implementation details
	Theoretical Analysis of NAGphormer

	Experiments
	Experimental Setup
	Comparison on Small-scale Datasets
	Comparison on Large-scale Datasets
	Ablation Study
	Parameter Study

	Conclusion
	Related Work
	Graph Neural Network
	Graph Transformer

	Complexity Analysis of NAGphormer
	Proof of Fact 1
	Experimental Details
	Dataset Description
	Implementation details

	Further Comparison with Gophormer
	Ablation study of readout function on large-scale datasets
	Efficiency experiments on large-scale graphs

